

SHRI SHANKARACHARYA TECHNICAL CAMPUS, BHILAI

(An Autonomous Institute affiliated to CSVTU, Bhilai)

SCHEME OF TEACHING AND EXAMINATION (EFFECTIVE FROM 2020-2021 BATCH) M. Tech. (Production Engineering)

S. No.	Board of Study	Subject Code	Subject		eriod r We	ek	Exa Theor	cheme o minati y / Pra	on ctical	Total Marks	Credit L+(T+P)/2
					Т	Р	ESE	СТ	ТА		
1	Mech. Engg.	ME225101	Advanced Foundry Technology		2	-	100	20	20	140	4
2	Mech. Engg	ME225102	Non-Traditional Machining Process	3	2	-	100	20	20	140	4
3	Mech. Engg	ME225103	Theory of Metal Forming	3	2	-	100	20	20	140	4
4	Mech. Engg	ME225104	Maintenance Engineering	3	2	-	100	20	20	140	4
5	Refer '	Table –I	Professional Elective-I	3	2	-	100	20	20	140	4
6	Mech. Engg	ME225191	Non-Traditional Machining Process Lab	-	-	4	75	-	75	150	2
7	Mech. Engg	ME225192	Maintenance Engineering Lab	-	-	4	75	-	75	150	2
Total			•	15	10	8	650	100	250	1000	24

1st Semester

L- Lecture T- Tutorial

P- Practical, ESE- End Semester Exam

CT- Class Test TA- Teacher's Assessment

	Table-I						
	PROFESSIONAL ELECTIVE I						
S.No.	Board of Study	Subject Code	Subject				
1	Mech. Engg.	ME2250121	Agile Manufacturing				
2	Mech. Engg.	ME2250122	Composite Material				
3	Mech. Engg.	ME2250123	Non-Destructive Testing				
4	Mech. Engg.	ME2250124	Finite Element Method				

Note (1) – 1/4th of total strength of students subject to minimum of twenty students is required to offer an elective in the college in a Particular academic session.

Note (2) - Choice of elective course once made for an examination cannot be changed in future examinations.

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Subject Code ME2250101	Advanced Foundry Technology	L = 2	T = 0	P = 0	Credits = 2
Evaluation Scheme	ESE	СТ	TA	Total	ESE Duration
	100	20	20	140	3 Hours

Course Objective	Course Outcomes
1. To develop problem solving skills in students in	On successful completion of the course, the student
solidification process.	will be able to:
2. To develop problem skills in casting process	1. Understand the Solidification process and
with gates, risers and its design processes.	design.
3. To expose the students to different processes	2. Understand the casting process with gates, risers
used in foundry technology, foundry furnaces	and its design processes.
and their applications.	3. Understand constructional features and working
4. To developed the skill and knowledge of	of different foundry technology, foundry
Ferrous and Aluminum metals and alloys.	furnaces and their applications.
5. To developed the knowledge of general	4. Understand Ferrous and Aluminum metals and
characteristics of common cast copper alloys.	alloys.
	5. Understand general characteristics of common
	cast copper alloys.

Unit-I

Solidification of Casting: Concept of solidification of metals. Homogenous and heterogeneous nucleation. Growth mechanism. Solidification of pure metals and alloys. Mechanism of columnar and dendritic growth. Coring or Segregation. Solidification time and Chvorinov's rule. Concept of progressive and directional solidifications.

Unit-II

Principles of Casting and Risering: Purpose of the gating system. Components of the gating System and its functions. Design of the gating System. Different types of gates. Gating ratio and its functions. Definition and functions of the riser. Types of risers and their application. Design of the riser - its shape. Size and location. Use of insulating material and exothermic compounds in risers.

Design of Casting: Factors to be considered in casting design. Design consideration in pattern making, moulding techniques and core making and assembly. Cooling stresses and hot spots in casting and modification in casting geometry to overcome them.

Casting Quality Control: Casting defects and factors responsible for them. Different inspection and testing methods to evaluate the casting. Quality control activities in a foundry. Salvaging methods of defective casting.

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO1

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Unit-III

CO3

Furnace Technology: Study of various furnaces used in foundry, construction and operation of crucible and hearth furnaces. Resistance, Arc and Induction furnaces-their construction. Operation and application. Heat treatment furnaces and drying ovens used in foundry.

Gray Cast - Iron Foundry Practice: Chemical Composition and structure of gray cast iron. Moulding, gating and risering techniques. Melting of gray cast iron in Cupola and induction furnace. Inoculation of gray cast iron. Application of gray cast iron castings.

Malleable Cast Iron: Chemical composition and structure of White- heart and black-heart malleable cast iron. Melting malleableization heat treatment and application of malleable cast iron.

Ductile Cast Iron: Chemical composition and structure of ductile cast iron. Melting and spheroidization treatment. Inoculation of ductile iron Properties and application of ductile iron casting.

Unit- IV

Steel Casting Practice: Common steel casting, their composition, structure and properties. Melting and refining of steel. Gating and risering of steel castings cleaning of steel castings.

Aluminium Foundry Practice: Composition, properties and application of common aluminium alloy casting. Melting and casting of AI-alloys. Gating and risering of AI-alloy casting.

Unit- V

Copper alloy Foundry Practice: General characteristics of common cast copper alloys. Melting and casting of copper alloys. Gating and risering of cu-alloy castings.

Text Boo	Text Books:						
S. No.	Title	Authors	Edition	Publisher			
1	Principle of Metal Casting	Heine, et. al		Tata-McGraw-Hill			
				Publication - 2003			
2	A Test Book of Foundry	Lal, M Khanna		Dhanpat Rai & Sons			
	Technology						

Reference Books:

S. No.	Title	Authors	Edition	Publisher
1	Foundry Technology	P.R. Beelely		Butterworth
2	Principles of Foundry Technology	P. Jain	5 Edition	McGraw Hill Education

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO4

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Subject Code ME2250102	Non-Traditional Machining Process	L = 2	T = 0	P = 0	Credits = 2
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	100	20	20	140	3 Hours

Course Objective	Course Outcomes
1. To develop the need and better understanding	On successful completion of the course, the student
of conventional and non-conventional	will be able to:
manufacturing process.	1. To understand and compared conventional and
2. To develop skills in fundamental principle of	non-conventional manufacturing process.
Abrasive jet machining and thermal metal	2. Understand AJM and EDM concept and operating
removing process.	characteristic.
3. To expose the students to different processes	3. Distinguish ECM with other operations and
used in Electro Chemical and Chemical	various application and understand the usage of
Processes.	various chemical and maskants in CHM.
4. To developed the skill and knowledge the	4. Understand the generation of plasma, electron
generation of plasma, electron beam, laser	beam, laser and their machining characteristics.
and their machining characteristics.	5. Understand the formation of ion beam and this
5. To developed the knowledge of formation of	application and various high velocity forming
ion beam and this application and various	process.
high velocity forming process.	

Unit-I

CO1

Introduction: Need for non-traditional machining processes. Processes selection classification on – comparative study of different processes.

Mechanical Process: Ultrasonic Machining-Definition-Mechanism of metal elements of the process- Tool feed mechanism. Theories of mechanics of causing effect of parameter applications.

Unit-II

Abrasive Jet Machining: Principles - parameters of the process applications-advantages and advantages.

Thermal Metal Removal Process: Electric discharge machining Principle of operation – mechanism of meta removal basic EDM circuitry-spark erosion Analysis of relaxation type of circuit material removal rate in relaxation circuits. Applications.

Unit-III

Electro Chemical and Chemical Processes: Electro chemical machining (ECM) Classification ECM process-principle of ECM Chemistry of the ECM parameters of the processes-determination of the metal

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO2

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

removal rate - dynamics of ECM process, Electro Chemical Grinding-Electro Chemical holding Electrochemical deburring.

Unit- IV

CO4

CO5

Plasma arc Machining: Introduction-Plasma-Generation of Plasma and equipment Mechanism of metals removal, PAN parameters- process characteristics - type of torches applications. Electron Beam.

Machining (EBM): Introduction-Equipment for production of Electron beam - Theory of electron beam machining, applications.

Laser Beam Machining (LBM): Introduction-principle of generation of lasers Equipment and Machining Procedure-Types of Lasers-Process characteristics-advantages and limitations-applications.

Ion Beam Machining: Introduction-Mechanism of metal removal and associated equipment process characteristics applications.

Unit- V

High Velocity Forming Process: Introduction - development of specific process selection comparison of conventional and high velocity forming methods - Types of high velocity forming methods- explosion forming process-elector hydraulics forming magnetic pulse forming.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	New Technology Institution of	Bhattacharya		
	Engineers			
2	Non-Traditional Machining	T Jagadeesha		I K International
	Processes			Publishing House Pvt.
				Ltd

S. No.	Title	Authors	Edition	Publisher	
1	Production Technology	HMT		McGraw Hill Education	
2	Modern Machining Process	P.C Pandy & H.S. Shan		Tata McGraw Hill	

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Subject Code ME2250103	Theory of Metal Forming	L = 2	T = 0	P = 0	Credits = 2
Freelwation Calesma	ESE	СТ	TA	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes		
1. To develop the basic fundamentals if the	On successful completion of the course, the student will		
metal forming process.	be able to:		
2. To develop skills in fundamental of forging	1. Understand the basics of metal forming.		
process and defects.	2. Recognize the importance of metal forging using		
3. To developed the concept of rolling, types of	different geometrical shapes and various defects.		
rolling mills and processes and its defects.	3. Understanding the concept of rolling, types of		
4. To developed the skill and knowledge of the	rolling mills and processes and its defects.		
extrusion and drawing and their applications.	4. To understand the concepts of extrusion and		
5. To developed the knowledge of formation	drawing and their applications.		
types of sheet metal forming processes and	5. To understand the types of sheet metal forming		
HERF.	processes and HERF.		

Unit-I

CO1

Introduction to Forming process: Introduction to metal forming, Effect of temperature on forming process-hot working, cold working. Effect of Metallurgical structure, Effect of speed of deformation work of Plastic deformation, Friction in forming operation.

Unit-II

Forging: Classification, various stages during forging, forging equipment, brief description, deformation in compression, forging defects. Residual stresses in forging.

Unit-III

Rolling of Metals: Classification, forces and geometrical relationships in rolling.

Variables in Rolling: Deformation in rolling, Defects in rolled products, Residual stresses in rolled products. Torque and Horsepower.

Unit- IV

Extrusion: Classification, Extrusion equipment, variables in extrusion, Deformation in extrusion, Extrusion defects, Work done in extrusion.

Drawing: Principles of Rod and wire drawing, variables in wire drawing, Residual stresses in rod, wire and tube drawing, Defects in Rod and wire drawing.

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO2

CO3

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Unit- V

CO5

Sheet Metal Forming: Introduction, forming methods, shearing and Blanking, Bending, stretch forming, Deep drawing, redrawing operations, Defects in formed products.

Text Boo	Text Books:					
S. No.	Title	Authors	Edition	Publisher		
1	Mechanical Metallurgy	Dieter G.E.		Mc Graw Hill		
				Publications		
2	Principles of Metal Working	R. Rowe		Amold London		
3	Metals Handbook	ASM		Volume IIASM		

S. No.	Title	Authors	Edition	Publisher
1	Theory of Metal Forming Plasticity: Classical and Advanced Topics	A. Sluzalec Metallurgy	2003	Springer Edition
2	Theory of Plasticity & Metal Forming Process	S. Singh		Khanna Publishers

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Subject Code ME2250104	Maintenance Engineering	L = 2	T = 0	P = 0	Credits = 2
Englishting Cohema	ESE	СТ	TA	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
1. To develop the basic fundamentals Maintenance,	On successful completion of the course, the student
Reliability, Maintainability and failure analysis.	will be able to:
2. To develop skills in maintenance systems and	1. Understand the principles and objectives of
condition monitoring.	Maintenance Engineering.
3. To developed the concept of various condition	2. Describe the various categories of
monitoring techniques.	maintenance.
4. To developed the skill and knowledge of the total	3. Understand the various condition monitoring
productive maintenance and concept of	techniques.
maintenance.	4. Understand the Total Productive Maintenance
5. To developed the knowledge of repair methods of	& Concept of Maintenance
material handling equipment.	5. Explain the repair methods of material
	handling equipment.

Unit-I

CO1

Maintenance, Reliability and Maintainability: Objectives, Productivity, reliability, redundancy maintainability, quality circle in maintenance, maintenance job and technologies.

Defect/Failure Analysis: Defect Generation, failure types, failure analysis, detect reporting and recording and breakdown analysis.

Unit-II

Maintenance Systems and Condition Monitoring: Planned, & Unplanned, Corrective opportunistic, Preventive, Predictive, Condition Based Maintenance, Design-out Maintenance, On-line & Off-line Monitoring, Visual, Temperature & Leakage Monitoring, Crack & Thickness Monitoring, Vibration Monitoring – selection of condition monitoring techniques, benefits.

Unit-III

Maintenance Planning and Scheduling and CMMS: Job Planning & Scheduling, Short-term & long term plans, Capital Repair, Renovation, Codification Cataloguing; Maintenance Operation Liasons work permit job monitoring, maintenance records and documentation, selection and scope of computerization. Equipment classification, Material Management Module, Standardization Rationalization, Process planning.

Unit- IV

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO2

CO4

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Total Productive Maintenance & Concept of Maintenance: Terotechnology, scope and Concept of TPM, Basic System of TPM, Productivity Circle, TPM vis-a-vis TQM; 5-Zero Concept, Reliability Based Maintenance, Evaluation of RBM programmes; Value Engineering in Maintenance, Productivity Measurement, Maintenance Audit.

Maintenance Organization: Formal & Informal Organization, Line & Staff Organization; Centralized. & Decentralized Organization, External Maintenance Services; Captive Shop facilities.

Unit- V

CO5

Maintenance Budget and Cost-Control: Maintenance cost behaviour, cost factors influencing Maintenance, Budgeting of Maintenance Cost, Cost Controls, Budgetary Control.

Training of Maintenance Personnel: Profile and need of Maintenance, Objectives & Ten Commandments of training, Categories of training; Modes of training and developments, training sources, agencies, institutions, Planning & designing of training programmes.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Industrial Maintenance	S.K. Shrivastava		S. Chand & Company
	Management			
2	Integrated Maintenance	B. N. Saha		. B. A. Publication
	Management concept to			
	computerization			

S. No.	Title	Authors	Edition	Publisher
1	Maintenance Planning, Control and Documentation	E.N. White		
2	Industrial Maintenance	H.P. Garg		S. Chand Publication
3	Maintenance Planning & Control	A. Kelly		Affiliated East West Press
4	Reliability Engineer	LS. Srinath		Affiliated East West Press

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Subject Code ME2250121	Agile Manufacturing	L = 2	T = 0	P = 0	Credits = 2
	ESE	СТ	TA	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
1. To develop the Lean, Flexibility, and Agility	On successful completion of the course, the
as applied in automotive manufacturing and	student will be able to:
supply chain management.	1. Understand the concepts of Lean, Flexibility, and
2. To develop skills in strategies/methodologies	Agility as applied in automotive manufacturing
concepts.	and supply chain management.
3. To developed the skill and knowledge of the	2. Learn Strategies/Methodologies relating to such
automotive manufacturing and change	topics as Production Planning and Control,
management.	Factory Dynamics.
4. To developed the concepts and skill in agile	3. Learn best business practices in automotive
manufacturing enterprise design.	manufacturing and change management.
5. To developed the skill and knowledge	4. To understand of the concepts and skill in agile
enhancing technologies for agile	manufacturing enterprise design.
manufacturing.	5. Acquire the ability to apply tools to enhanced the
č	technologies for agile manufacturing.

Unit-I

CO1

CO2

CO3

Introduction: What is agile Manufacturing - Competitive environment of the future the business case for agile manufacturing conceptual frame work for agile manufacturing.

Unit-II

Four Core Concepts: Strategy driven approach - integrating organization, people technology interdisciplinary design methodology.

Unit-III

Agile Manufacturing and Change Management: The change implications. Post failures in advanced manufacturing, changes on the way, traditional management accounting, paradigm, investment appraisal, product costing - performance, measurement and control systems, Traditiosal organization, control technological and design paradigms traditional problems in workplace- organizational issues - role of technology.

Unit- IV

Agile Manufacturing Enterprise Design: Agile manufacturing - enterprise design. system concepts as the basic manufacturing theory - joint technical & organizational design and a model for the design of agile

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

manufacturing enterprise, enterprise design process insights into design processes, what is interdisciplinary design, Main issues - simple design example.

Unit- V

CO5

Skill & Knowledge Enhancing Technologies for Agile Manufacturing: Skill and Knowledge enhancing Technologies - scheduling - technology design strategic-Design Concepts. Design and Skill of Knowledge enhancing Technologies for machine tool systems - Historical overview, Lessons, problems and Future development.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Agile Manufacturing	Forging New		Addison Wesley
		Frontiers - Paul		Publication
		T. Kidd		
2	Agile Manufacturing	Proceedings of		Tata McGraw Hill
		International		Publications
		Conference - h		
3	On Agile Manufacturing	M.P Chowdia		Tata McGraw Hill
				Publications

S. No.	Title	Authors	Edition	Publisher
1	Agile Manufacturing: The 21st Century Competitive Strategy	A. Gunasekaran		Elsevier; Illustrated Edition
2	Agile Manufacturing Systems	K Hans Raj		Alpha Science International Limited

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Subject Code ME2250122	Composite Material	L = 2	T = 0	P = 0	Credits = 2
	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
1. To developed the skill and knowledge of composite materials.	On successful completion of the course, the student will be able to:
2. To develop and evaluate the properties of fibre reinforcements, polymer matrix	1. To understand the basic fundamentals of the composite materials.
materials and commercial composites.3. To develop skills in manufacturing of	2. To understand and evaluation of the properties of fibre reinforcements, polymer matrix materials and
composite.4. To developed the skill and knowledge of the following of supervision of films.	commercial composites. 3. Understand the competency in one or more
fabrication of composite and design of fibre reinforced composite structures.	common composite manufacturing techniques, and be able to select the appropriate technique for
5. To developed the skill and knowledge about application of composite and introduction	manufacture of fibre-reinforced composite products.
about MMC composites.	4. Understand the fabrication of composite and design of fibre reinforced composite structures
	5. Understand the application of composite and fundamental of MMC composites.

Unit-I

Introduction to Composite Materials: Definition, Classification, Types of matrices & reinforcements, characteristics & selection, Fiber composites, laminated composites, particulate composites, prepregs, sandwich construction.

Unit-II

Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli – Rule of mixture, Macro mechanics of a lamina: Hooke's law for different types of materials, number of elastic constants, Laminate code, Failure criterion.

Unit-III

Manufacturing: Lay Up and Curing – open and closed mould processing – Hand layup techniques Bag moulding and filament winding. Pultrusion, Pulforming, Thermoforming, Injection moulding, Cutting, Machining and joining, tooling, Quality assurance Introduction, material qualification, types of defects, NDT methods.

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO51

CO3

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Unit-IV

CO4

Fabrication of Composites: Cutting, machining, drilling, mechanical fasteners & adhesive bonding joining computer aided design manufacturing tooling fabrication equipment.

Design of Fibre Reinforced Composite Structures: Introduction, Composite structural design, Design criteria, Laminate design, Mathematical analysis of the laminate, Design of composite stiffeners.

Unit- V

CO5

Application Developments: Aircrafts, missiles, space hardware, automobile, electrical and electronics, marine, recreational and sports equipment-future potential of composites.

Metal Matrix Composites: Reinforcement materials, types, Characteristics & Selection, base metals-selection, applications. Powder metallurgy technique, liquid metallurgy technique.

Text Books:

S. No.	Title	Authors	Edition	Publisher		
1	Composite Materials Handbook	Mein Schwartz		Mc Graw Hill Book		
				Company		
2	Mechanics of Composite	Autar K. Kaw		CRC Press New York		
	Materials					

S. No.	Title	Authors	Edition	Publisher
1	Composite Materials: Science and Engineering	K. K. Chawla		Springer Science & Business
2	Handbook of Composites	S. T. Peters	2 nd Edition	Springer US

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Subject Code ME2250123	Non-Destructive Testing	L = 2	T = 0	P = 0	Credits = 2
Englishting Cohema	ESE	СТ	TA	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
1. To developed the skill and knowledge of non-	On successful completion of the course, the student
destructive testing.	will be able to:
2. To develop skill and knowledge in methods of	1. Understand the basic fundamentals of the non-
generating magnetic field and eddy current	destructive testing.
inspection.	2. Understand the generation of magnetic field, their
3. To develop skills and knowledge of basic	types and eddy current inspection.
equipment characteristics of ultrasonic.	3. Understand the basic equipment characteristics of
4. To developed the skill and knowledge of the	ultrasonic.
radiography inspection and their types.	4. Understand of the radiography inspection and
5. To developed the skill and knowledge about	their types.
optical holography and microwave inspection	5. Understand the process of optical holography and
techniques.	microwave inspection techniques.

Unit-I

CO51

Introduction to ND Testing: Selection of ND methods, visual inspection, leak testing, Liquid penetration inspection, its advantages and limitation.

Unit-II

Magnetic Particle Inspection: Methods of generating magnetic field, types of magnetic particles and suspension liquids steps in inspection – application and limitations.

Eddy Current Inspection: Principles, operation variables, procedure, inspection coils, and detectable discounts by the method.

Unit-III

Ultrasonic inspection: Basic equipment characteristics of ultrasonic waves, variables inspection, inspection methods pulse echo A,B,C scans transmission, resonance techniques, transducer elements couplets, search units, contact types and immersion types inspection standards-standard reference blocks.

Unit- IV

Radiography Inspection: Principles, radiation source X-rays and gamma rays, X-ray-tube, radio graphic films, neutron radiography, Thermal inspection principles, equipment inspection methods applications.

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

CO2

CO4

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Unit- V

CO5

Optical Holography: Basics of Holography, recording and reconstruction - Acoustical Holography: systems and techniques applications. Indian standards for NDT.

Microwave Inspection: Microwave holography, applications and limitations.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Non-Destructive Testing	Mc Gonnagle JJ		Garden and reach New
				York
2	Non-Destructive Evolution and		9 th	Volume 17 of metals
	Quality Control			hand book
3	The Testing instruction of	Davis H.E		McGraw hill
	Engineering materials	Troxel G.E		
		Wiskovil C. T.		

S. No.	Title	Authors	Edition	Publisher
1	Practical Non-Destructive	Baldev Raj		
1	Testing	Narosa		
2	Non-Destructive Testing of	. Jayakumar and		V. Lormi Dublications
2	Materials	K. Elangovan		V– Laxmi Publications

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Subject Code ME2250124	Finite Element Methods	L = 2	T = 0	P = 0	Credits = 2
	ESE	СТ	TA	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objective	Course Outcomes
1. To understand various elementary methods	On successful completion of the course, the student
of formulation of finite elements.	will be able to:
2. To understand shape function and able to solve one dimensional problem based on	1. Understand the basic fundamentals finite element methods.
truss.	2. Understand shape function and able to solve
3. To understand two-dimensional problems,	one dimensional problem based on truss.
Constant strain triangles, iso parametric elements.	3. Understand two-dimensional problems, Constant strain triangles, iso parametric
4. Be able to formulate Finite element for	elements.
Beams and frames.	4. Able to formulate Finite element for Beams
5. To understand three-dimensional problems	and frames.
in stress analysis.	5. Able to solve three-dimensional problems in stress analysis.

Unit-I

CO1

Basic steps in FEM formulation, Rayleigh Ritz method, Galerkins method, Von mises stress of generalization of the finite element concepts weighted reordal and variational approaches.

Unit-II

a) 1-D Problems, basic functions and shape functions, Convergence Criteria h & p approximations, Natural Coordinates.

b) Application of 1-D problems -plane trusses Three dimensional trusses

Unit-III

CO3

CO4

CO2

Two-dimensional problems, Constant strain triangles, isoparametric elements, sub-parametric super parametric numerical integration and others elements, Axis symmetric solids, single variable problems.

Unit- IV

Beams and frames: Finite element formulation, boundary consideration, plane frames, three dimensional frames, Eigen value and time dependent problems, plane elasticity.

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Unit- V

CO5

Three-dimensional problems in stress analysis, bending of plates non-linear material problems, direct solution technique creep, Computer implementation solution technique of FEM.

Text Books:

S. No.	Title	Authors	Edition	Publisher
1	Introduction to finite elements	T.R.Chandrupatla		PHI
		&		
		A.D.Belegundu		
2	Introduction to the finite element	C.S.Desai and		
	method	J.F.Abdel		
3	Finite Element Analysis	P.Seshu		PHI

S. No.	Title	Authors	Edition	Publisher
1	The finite element method in Engineering	S.S.Rao		Peragamon
2	An Introduction to the finite Element method	J.N.Reddy		ТМН

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Subject Code ME2250191	Non-Traditional Machining Process Lab	L = 2	T = 0	P = 0	Credits = 2
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	75	-	75	150	3 Hours

Course Objective	Course Outcomes
1. To developed the skill and knowledge of	On successful completion of the course, the student
EDM.	will be able to:
2. To developed the skill and knowledge of	1. Understand the procedure, working and use of
Electrolytic Machining.	EDM.
3. To developed the skill and knowledge of Laser	2. Understand the procedure, working and use of
Machining.	Electrolytic Machining.
4. To developed the skill and knowledge of	3. Understand the procedure, working and use of
Electron Beam Machining.	Laser Machining.
5. To developed the skill and knowledge of Ion	4. Understand the procedure, working and use of
Beam Machining.	Electron Beam Machining.
	5. Understand the procedure, working and use of
	Ion Beam Machining.

List of Experiments

- Electrical Discharge Machining
- Electrolytic Machining
- Laser Machining
- Electron Beam Machining
- Ion Beam Machining
- Plasma Arc Machining
- Ultrasonic Machining
- Chemical Machining

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards

Shri Shankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

1st Semester M. Tech. (Production Engineering)

Subject Code ME2250192	Maintenance Engineering Lab	L = 2	T = 0	P = 0	Credits = 2
Evaluation Scheme	ESE	СТ	TA	Total	ESE Duration
	75	-	75	150	3 Hours

Course Objective	Course Outcomes
1. To developed the skill and knowledge of	On successful completion of the course, the student
Planned preventive and running maintenance.	will be able to:
2. To developed the skill and knowledge of	1. Understand the procedure, working and use of
Maintenance defect monitoring.	Planned preventive and running maintenance.
3. To developed the skill and knowledge of	2. Understand the procedure, working and use of
Maintenance stores spare part monitoring.	Maintenance defect monitoring.
4. To developed the skill and knowledge of	3. Understand the procedure, working and use of
statutory inspection monitoring.	Maintenance stores spare part monitoring.
5. To developed the skill and knowledge of	4. Understand the procedure, working and use of
Maintenance vibration analysis.	statutory inspection monitoring.
	5. Understand the procedure, working and use of
	Maintenance vibration analysis.

List of Experiments

- Planned preventive and running maintenance
- Maintenance defect monitoring
- Maintenance stores spare part monitoring
- Statutory inspection monitoring
- Maintenance vibration analysis

		October 2020	1.00	Applicable for AY 2020-
Chairman (AC)	Chairman (BoS)	Date of Release	Version	21 Onwards